Blog function test

Blog function test

2024, Mar 16    

this is A test

this is joy :joy:
this is a tent :tent:

delete line

this is
a Table
Paragraph Textaaaaaa

this is a link

[x+y=10]

$x^2 + 2x + 5 + \sqrt x = 0$

[\begin{cases} x+y+z=10
x+2y+3z=20
x+4y+5z=30
\end{cases}]

$\sum_{i=1}^{n}$,$\sum_{i=1}^nx_i$,$\prod\limits_{i=1}^n$,$\frac 1 5$,$\frac{x+1}{x^2}$,$9 \times 8 = 72$ $5 \cdot 6 = 30$ $30 \div 6 = 5$

$y= \begin{cases} x^2, & x>0,\ x^2 +x-8, & x \le 0 \end{cases}$

[\begin{matrix} 1 & 2 & 3
4 & 5 & 6
7 & 8 & 9 \end{matrix}]

$e^{i\pi} + 1 = 0$

$E = mc^2$

$F=G \frac {m_{1}m_{2}}{R^{2}}$

$\begin{array}{lll} \nabla\times E &=& -\;\frac{\partial{B}}{\partial{t}}
\ \nabla\times H &=& \frac{\partial{D}}{\partial{t}}+J
\ \nabla\cdot D &=& \rho \ \nabla\cdot B &=& 0 \ \end{array}$

$\hbar\frac {\partial \psi} {\partial t} = \frac{-\hbar^2}{2m} \left(\frac{\partial^2} {\partial x^2} + \frac{\partial^2} {\partial y^2}+\frac{\partial^2} {\partial z^2} \right) \psi + V \psi$

The Cauchy-Schwarz Inequality
\(\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)\)